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The structure of normal hydrodynamic shock waves in a viscous, heat- 

conducting gas is dealt with in reference [ 1 1. It is also interesting to 

study the limiting cases when one or two of the dissipative coefficients 

are small enough to be neglected. The structure of a shock wave in the 

absence of thermal conductivity was dealt with in another work [ 2 1 and 

in the absence of both conductivity and of viscosity in [ 3 1. In this 

H 

Fig. 1. Fig. 2. 

article we are dealing with the structure of a normal shock wave, taking 

into account the effects of thermal and electrical conductivity, but not 
of viscosity. 

The system of equations describing the one-dimensional transient motion 
of a thermally and electrically condactive gas can be written down as 

dH 
-= 

v, dx 
vH-cc, 
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k-c-= 
dx 

Here j is the mass flow, J is the momentum flow, c is the energy flow, 

c1 = CE. 

A solution of this system, describing the structure of a shock wave, 

should depict a forward or progressive stream for z = f m. Therefore, to 

flows corresponding to x = i m there should correspond paints on the 

v&plane, where the derivatives dT/dx and dH/dx- become zero. These points, 

singular points of system (1). lie at the intersection of the hyperbola 

and the curve 
Hv=cl 

j(vH) =O 

4) 

(3) 

If we eliminate v from equations (2) and (3) we arrive at a third de- 

gree equation for finding H. When y < 2, one of its roots is negative and 

it lies, therefore within the range v < 0. When y > 2, the greater root 

aways exceeds dSlr J and lies within the range T < 0. Therefore, within 

the range which interests us, namely v > 0, T > 0, there exist no more 

than two singularities of system (1). We will denote the point correspond- 

ing to the larger of the values of v as A and all quantities associated 

with this will carry the suffix 1. The other singular point will be re- 

ferred to as B. and corresponding quantities will carry suffix 2. The 

magneto-hydrodynamic shock wave is represented by displacement from point 

A to point B. 

It is possible to demonstrate that there exist only two relative loca- 

tions for curves (2) and (3), as shown in Figs. 1 and 2. Xf we follow the 

values of the derivative dH/dx along the line T = const and f = 0, we can 

see that in moving along line f = 0 in the v&plane from point A to point 

B in the region T > 0, Hv > c,,, we find that the temperature increases. 
If we move between these singular points along the line Hv = cl, the 

temperature either increases all the time, or rises at first and then 

drops. Integral curves can only emerge from a region bounded by curves 

(2) and (3) and T = T2, so that point A is a nodal point and integral 
curves emerge from this point when x increases. 

If, at point B. the inequality 

is valid, this point is a “saddle* point (the location of the curves (2) 
and (3) can. then, be as shown in Figs. 1 or 2). In this case there exists 



1646 A.G. Kulikovskii and G.A. Liubiraov 

one and only one integral curve passing from A to B and representing the 

structure of the shock wave (Fig. I). This curve passes through the region 

bounded by curve (21, (3) and H = Hz 

If at point 8 the opposite inequality to (41 holds, then point B be- 
comes a nodal point from which integral curves energe for increasing 

values of X; (the location of the curves (2) and (3) for this case can 

then only be as in Fig. 2). 

Line 

is a limiting line to which the integral curves approach from both sides. 

Because a continuous transition through this line is impossible, it can 

only be traversed as a jump in which 7’ and H are discontinuous and V 

vanishes. In this latter case, the solution,which represents a shock wave, 
consists of the intersection of the integration curve going from point A 

to H= Hz, T= T2, lying outside point (5) and the isothermal, isomagnetic 
shock or jump from this point to point B (Fig. 2). 

Now let us deal with the case where the electrical conductivity of the 

gas is very large, so that 

Here the integral curve representing the shock wave goes from point A, 

along hyperbola (2f, to point T = T2, If this point is not point B, then 

further motion is along the line T= T2 as far as point H = Hz. And if, 

in turn, this point is not point B, an isothermal, isomagnetic shock or 

jump will take place. 

The width of the flow region represented by the intersection of the 

integral curve between point A and T= T2 is determined by the thermal 

conductivity. The width of the rest of the flow region is determined by 
the magnetic viscosity, and, because of inequality (4). is considerably 

narrower than the previous portion. The flow region represented by the 
intersection of the integral curve, extending from the intersection of 

curves (2) and 7’ = T2, to point 3, on increase in the inequality (6). 
tends to an isothermal (but not an isomagnetic) shock or jump. 
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